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Abstract. The electrical resistivity of the heavy-fermion alloys is calculated through a two- 
conduction-band slave boson model using the self-consistent coherent potential approxi- 
mation method. The results indicate that for very low temperatures the resistivity of the alloy 
system follows the p o  + AT' law and the coefficient A changes from negative values to 
positive values as the alloy concentration increases. The occurrence of the resistivity maxi- 
mum at a finite temperature is also obtained on  increasing the concentration of heavy- 
fermion alloys. 

1. Introduction 

Much progress has been made in experimental and theoretical research on the heavy- 
fermion (HF) or the Kondo lattice (KL) system [l]. The HF system, which covers a wide 
range of inter-metallic rare-earth or  actinide compounds, is characterised by a very large 
effective mass of the electrons near the Fermi level. Since the magnetic ions in this 
system usually have a 4f or 5f shell with an extremely small radius, very strong intra-site 
correlation and relatively weak hybridisation with the conduction band, theoretically 
the Anderson Hamiltonian with strong intra-site correlation is often used. Because the 
problem of dilute magnetic ions in a metal (Kondo impurity) has been extensively 
studied in the past [2], the research interest of the theoretical and experimental workers 
was mostly focused on the KL system [3-81. In recent years, attention has been devoted 
to the Kondo alloy system and the disorder effect on the HF system [9-171. Experi- 
mentally, the crossover from single-impurity behaviour to the KL in the HF alloy 
Ce,La, -xCu2Siz has been investigated [9]. They have found that the low-temperature 
maximum of the electrical resistivity was observed at T = T,,,,,, where T,,, increases 
with the increasing magnetic ion concentration x .  More accurate and systematic results 
have been given in [lo, 111. Theoretically, the alloy analogue approximation of the 
Anderson lattice has been treated previously within the coherent-potential approxi- 
mation (CPA) approach [18,19] so that the mixed valence in the system can be discussed. 
A CPA calculation of the electrical resistivity of the HF alloys has been given in [ 141, where 
the Anderson alloy model with small f-band dispersion was used. However, in the 
calculation in [14], a drastic variation in the Kondo temperature TK with the con- 
centration of the alloy was assumed. This is not in agreement with the experimental 
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results in [lo]. In a previous paper [15], we have investigated the mean-field electron 
density of states (DOS) of the HF alloy system through a two-conduction-band slave boson 
alloy Hamiltonian. We have found that the electron DOS changes gradually from that 
of the concentrated limit (KL) to the dilute limit (Kondo impurity). We have also 
demonstrated that, in the mean-field approximation, the Kondo temperature of the 
system does not vary with the concentration. This result is in agreement with the 
experiment in [ 101. In the present work, we intend to discuss the resistivity of the system 
through the slave boson alloy model. We organise the paper as follows: § 2 is a brief 
review of the mean-field CPA formalism of the two-conduction-band slave boson alloy 
model. In § 3 ,  the mean-field resistivity of the system is formulated through the Green 
functions in the CPA effective medium. The numerical result of the residual resistivity 
for different concentrations is also given in § 3. We present the numerical results of the 
mean-field finite-temperature resistivity in § 4. In 9 5 ,  by adding a Gaussian fluctuation 
contribution of the resistivity to the mean-field result according to the Matthiesson rule, 
the temperature T,,, of the resistivity maximum for various concentrations is estimated. 
Finally, 9 6 contains some concluding remarks. 

2. Model and CPA formalism of the alloy system 

The alloy system that we shall investigate is constituted of two types of rare-earth or 
actinide atoms A and B. In this system, some of the A (Ce- or U-like) atoms are 
substituted by B (La- or Lu-like) atoms which are neighbours of the A atoms in the 
periodic system and have no f electrons. Examples of the alloys are Ce,La, -,Cu2Si2, 
Ce,La, -,Pb3 and Ce,La, -,Cu6. The system may change from a pure lattice of Ce- or U- 
like atoms (i.e. KL) to a dilute alloy when the concentration x (percentage of Ce- or U- 
like atom) varies from unity to zero. The Anderson Hamiltonian and its lattice form 
with extremely strong f repulsion ( U  = =) are usually adopted as a starting point for the 
discussion of the HF problem. A powerful method for handling the low-temperature 
properties of the system is the slave (or auxiliary) boson technique [20-22]. In order to 
study the crossover from the single impurity to the concentrated regime, the many- 
impurity Anderson model must be introduced. In accordance with [20], the slave boson 
Hamiltonian of the many-impurity Kondo system can be written as 

= 2 EfkC:k&Cfku + 2 vg/(c;fuf /ubi  -k HC) + -k EL(1 - ~ / > l f & f i u  (1) 
1 . k . E  I . / . &  1 . E  

with the constraint for each A site given by 

(2fLfiu + b t b , )  = 1 I E A  (2) 

where i (= 1,2)  is the index €or the conduction bands, and N ( E )  = 1 /20  
when 1 E /  < D (D is the half-width of the conduction band). Here we assume that there 
are two conduction bands with the same dispersion & k ,  and 2e0 is the separation between 
two bands. For E~ < D, the metallic behaviour of the system can be ensured even in the 
pure lattice case [23-251. E ,  is the random variable ( E 1  = 1 for 1 E A ;  = 0 for 1 E B) .  
b: and b, are slave boson operators introduced on each A site. 0 is the spin index. Here 
we take j = s = t for brevity. Ef is the energy level of the f electrons on the A sites and 
EL is the energy level of the f electrons on the B sites. In order to assure no f-electron 
occupation on the B sites, we should take E L  --j =. In the mean-field approximation, the 

= &k i 
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operator b is replaced by a c number and the Lagrange multiplier AI  is introduced to 
satisfy the constraint. The parameters bI and A, are determined by the equations 

AIb, = - v c  ( c i 7 f d  
U 

(nj) = 1 - 1 b/ 1 * 
For simplicity, we assume that 

I € A .  

b, = b A ,  = A  f € A .  

So the mean-field Hamiltonian of the HF alloy system can be written as 

L f k o  . 

(3) 

(4) 

0 Vb* 

V A  = 0 0 Vb* c' Vb Vb 0 

in which b and A can be determined from equation (3) after taking their averages over 
the disorder ensemble. Ef (= Ef + A )  represents the renormalised f level on the A site 
and is generally quite small. As an approximation, we take E/.= 0, i.e. A = 1 E t l ~ L  = 
EL - Ep This is equivalent to replacing constraint (ni)  = 1 - I b, I * with constraint 
(ni)  = 1 on each A site. This is obviously reasonable in the Kondo (or near-integer) 
limit. 

Now, we use the CPA method [26] to solve the disorder Hamiltonian. The CPA 
equations are given in [ 151, where the coherent potential can be written as a 3 x 3 matrix: 

after taking E ~ ( E ~ )  + m. In equation (6), Cfdz) is determined by 

ZffFff = x - 1 (7) 

in which F(z) = (l/N)C,G(k z )  and G(k z )  is the matrix Green function in the effective 
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medium. One can easily see that ZfAz) = 0 for the pure lattice case (x = 1). In the dilute 
limit (x + O), we have 

x Z p  (1 - x)z + v21bl2[F:,(Z) + F & ( z ) ]  (8) 

where 

The coherent potential for 0 < x < 1 can be obtained by solving equation (7) numerically 
on z = w + io+. The Green functions in the effective medium can be used to determine 
the mean-field physical quantities of the alloy system. In the following sections, we shall 
calculate the mean-field electrical resistivity of the system using the above results of the 
Green functions and the coherent potential. 

3. The zero-temperature resistivity of the alloy 

The electrical conductivity of the system is mainly due to the conduction electrons 
because of the very large effective mass of the f electrons. There are two possible sources 
of scattering of electrons in the system. One is the scattering of the electrons from 
the impurities (i.e. B atoms). The other is the electrons scattered by the Gaussian 
fluctuations of the slave bosons on the A sites. First, we consider the former source. The 
latter will be considered in Q 5 .  Here we assume that the Matthiesson rule is valid in the 
system so that the resistivities due to the above two scattering mechanisms can be added. 
Using the Green functions of the conduction electrons in the effective medium, the CPA 
conductivity of the system in the presence of the impurities only can be written as [ 14,271 

Om = - 1 dw (- $1 &: [Im[Gll(kw + io+)],  + {Im[G,,(kw + 
3Q 

{Im[Zff(w + i0+)]}’v4 1bi4[(w - + (w - E ~ ~ ) ~ ]  
X ( X 2  + Y*)2  (9) 

where 

In equation (9), G , ,  and G2? are Green functions of the conduction e1e;trons in the 
effective medium [ 151. Using the self-consistent equation for the coherent potential, the 
mean-field resistivity can be determined from equation (9). In the numerical calculation, 
one has to calculate the coherent potential on the real axis and determine the mean-field 
parameters b self-consistently before substituting them into equation (9). However, 
for a special case (i.e. at zero temperature), the calculation is quite simple. Since 
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0.2 0.4 0.6 0.8 1.0 Figure 1. Variation in 6 withconcentrationx; here 
X E,)  = 0.20. 

0 LLl! 
(- a f / d w )  = 6 ( w )  when T = 0 K,  one can easily see from equation (9) that the zero- 
temperature conductivity depends only on the coherent potential at z = io+. Because 
the electron-hole symmetry of the system, we can prove that 

Re[Cff(- w + io’)] = - Re[Zff(w + io+)] 

Im[Z,(- w + io+)] = Im[Zff(w + io+)]. 

(11) 

(12) 

and 

One can easily show from equation (11) that Re[ZfAiO+)] = 0. With this relation, after 
some algebra, the zero-temperature conductivity can be written as 

2e2vg 1 D 6 2 [ ( ~ k  - + ( E ~  + E ~ ) ~ ]  
(7, (0) = -- 1- d &k 

352, 4nD [ ( E :  - E ; ) *  + 46*&212 

and thus the resistivity and the resistivity per mole of the magnetic ions are given, 
respectively, as 

In equation (13), 6 = V 2  I b I ’/I Im[EfAiO+)] I and can be determined by the self-consistent 
equation 

Equation (15) can be easily derived from equation (7) using the relation Re[ZfAiO+)] = 
0. Since the Gaussian fluctuation contribution to the resistivity is zero at zero tempera- 
ture, the present result does represent the residual resistivity of the system. The numeri- 
cal results of 6 and the residual resistivity are shown in figure 1 and figure 2. Figure 2(a)  
shows that the curve of the residual resistivity against x differs greatly from the usual 
Nordheim law. Figure 2(b )  indicates that the residual resistivity per mole decreases 
monotonically as the concentration increases from 0.3 to 1.0. This decrease in the 
resistivity is due to the formation of coherence in the system. In the concentrated limit, 
i.e. the pure lattice of the magnetic ions, the DC conductivity is infinite in the mean-field 
theory because of the periodicity. In this limit the only contribution to the resistivity of 
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( b )  
0.8 

X X 

Figure 2. (a )  Residual electrical resistivity as a function ofx. ( b )  Residual electrical resistivity 
per mole of magnetic ions: here e ,  = 0 . 2 0 .  

the system comes from the electrons scattered by the Gaussian fluctuations of the boson 
fields and occurs only at a finite temperature T > 0. 

4. The mean-field resistivity at a finite temperature 

We shall present the numerical results of the mean-field electrical resistivity in this 
section. However, before we look at the numerical results, let us first analyse equation 
( 9 ) .  Equation ( 9 )  can be rewritten as 

where 
D {Im[Zff(w + iO+)]}2V41b~4[(~  - t (w - E ~ ~ ) ~ ]  

(17) z ( w T )  = & l-, d E k  (X2 + Y2)2 

is a quantity which is similar to the transport relaxation time in the Wilson formula. The 
implicit temperature dependence o f t  is through the temperature dependence of b which 
isnearlytemperature independent at asufficient low temperature. Therefore, at T < T K ,  
the temperature dependence of t can be neglected. Using the electron-hole symmetry 
relations (1 1) and (12 ) ,  one can easily show that t( w )  = t( - w) .  So t( w )  can be expanded 
in the vicinity of the Fermi level as 

Therefore the low-temperature mean-field conductivity of the system can be written as 
z(w)  = zo + z,w2 + . . .. 

a,(T) = ( 2 e 2 u ~ / 3 S 2 , ) ( l / 2 D ) [ z o  + ( r 2 / 3 ) t 1  T 2 ]  

(18) 

(19) 
and the mean-field resistivity per mole is 
P m ( T )  = 1 / X O m ( T )  

= p o / [ l  + (B/po)T2] = po - BT2 + O(T4) 
where po is the residual resistivity: 

po = ~ ~ ( 0 )  = 3Q0D/e2u$zO 
and 

is the coefficient of the T 2  term of the mean-field resistivity at low temperatures. The 
B = ( n 2 / 3 > ( ~ l / z o ) p o  (22) 
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X 

Figure 3. B ( x )  against x .  

I x  I 

1 I 
0 0.2 0.4 0.6 

T / T ,  

Figure 4. Temperature dependence of the mean- 
field resistivity per mole of magnetic ions for dif- 
ferent concentrations, where we take E,,  = 0 .20  
a n d J  = V2/lEf l  = 6.277 x 10-20. 

numerical result for B at different x is shown in figure 3. Clearly, B decreases with 
increasing alloy concentration x ,  reflecting the growing coherence between magnetic 
ions. The development of coherence in the system is due to the interaction effect between 
the Kondo ions which has been included in our CPA scheme through the coherent 
potential of the effective medium. It is this interaction effect, which appears as the RKKY 
interaction in the magnetic moment model, this depresses the f-c exchange scattering 
near the Fermi level [28] and thus induces a decrease in B. 

When x + 0, using equation ( 8 ) ,  we have 

z ( w T )  = ( w 2  + A2)/2V2 lb12A (23) 
where A = V 2  I b I * / D  represents the width of the f-electron resonance peak in the single- 
impurity problem. This result is simply the expression for the relaxation time of the 
dilute impurity problem. 

The numerical results of the mean-field resistivity per mole against T for different 
concentrations are shown in figure 4. The total resistivity is composed of this mean-field 
part and a part from the Gaussian fluctuations. We shall discuss the latter part in the 
next section. 

5. The resistivity maximum of the alloy system 

From figure 4, we can see that the mean-field parts of the electrical resistivities of various 
concentrations decrease with increase in the temperature monotonically. At very low 
temperatures ( T <  TK) ,  it decreases as T 2 .  In the pure lattice case the mean-field 
resistivity is zero because our mean-field Hamiltonian can be diagonalised into three 
quasi-particle bands with the use of the Bogoliubov transformation. Beyond the mean- 
field approximation, there exists another contribution to the resistivity which comes 
from the Gaussian fluctuations of the boson fields. It has been shown both experimentally 
[9] and theoretically [ 5 , 7 ]  that the low-temperature contribution to the resistivity in the 
HF lattice is determined by the T2 term and its coefficient A is inversely proportional to 
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the square of the Kondo temperature TK within the Gaussian fluctuation approach. 
However, as pointed out in [29], the T 2  regime only persists at very low temperatures. 
It will begin to inflect or saturate as T approaches TK. The inflection of the resistivity 
curve is due to saturation of the boson fluctuations. Here we give a simple explanation 
of the inflection in the resistivity in the two-conduction-band HF lattice system. In an 
earlier work [24], we have demonstrated that the Gaussian fluctuations of the slave 
boson field can cause the electrons to make a transition from the conduction bands into 
the f band. Therefore the transport relaxation rate due to the scattering of the electrons 
off the boson fluctuations is proportional not only to the ‘strength’ of boson fluctuations 
(i.e. the T 2  term in [ 5 ] ) ,  but also to the f-electron DOS near the Fermi level. In our two- 
conduction-band HF system, the f-electron DOS N f ( w )  near the Fermi level can be written 
as 

NT’(0) = 2CYD[1 + C(W/TK)’] (24) 

where CY = m/m* and m* is the effective mass of the heavy electrons. C is a numerical 
parameter which can be adjusted by taking different value of E~ [24]. Using the Wilson 
formula and equation (24), we obtained the resistivity due to the boson fluctuations as 

P f m  = A,T2/P  + (7./7J21 (25) 

where T,  = (V?/x-)TK. Here we see that the resistivity deviates from the T 2  law 
through the denominator [l + (T/TJ2]. 

Since the boson fluctuation is local and incoherent, the resistivity due to the scattering 
of the electrons off the boson fluctuations in the alloys may have the same form as 
equation (25). As a preliminary estimate, we can assume that the resistivity per mole 
due to the fluctuations in the alloy system is the same as that of the lattice. Therefore 
the total resistivity of the system can be written as 

where A,, and T, are chosen suitably. The temperature of the resistivity maximum can 
be determined from 

d o (  T)/d T = 0. (27) 

After a simple derivation, we obtain 

Obviously, the resistivity maximum appears at a finite temperature T,,, ( > O )  for 
B(x)  < Ao. There exists a critical concentration x, satisfying the condition B(x,)  = A , ,  
where T,,, decreases to zero as x decreases to x,. Furthermore, when T < T K ,  the 
coefficient of the T2 term in the total resistivity can be expressed as 

A(x) = A0 - B(x).  (29) 

A(x)  will change its sign from negative to positive with increasing x.  The numerical 
results of T,,, are shown in figure 5. The calculated resistivity curves of the HF alloys 
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Figure 5. The resistivity maximum temperature 
T,,, as a function of x .  where we take A. = 
4.0 X 1O7(3Q,/e’o~D) and T, = 0.25TK. 

Figure 6. Variation in total electrical resistivities 
for different x with temperature, where we take 
A,, = 4.0 X 1O7(3Q,/e2u:D) and T, = 0.25TK. 

below TK are given in figure 6. Since in the slave boson theory an unphysical phase 
transition occurs at T = TK in the mean-field approximation as well as in the Gaussian 
fluctuation approach, our calculation is valid only in the regime T < TK. Nevertheless, 
our low-temperature result can be compared with the experiments in [9] and [30]. 

6. Conclusions 

In summary, we have investigated the electrical resistivity of the HF alloys through a 
two-conduction-band slave boson alloy Hamiltonian. In the calculation, we have 
assumed that the resistivity of the system is composed of two independent parts: impurity 
scattering part and the boson fluctuation part. In the low-temperature region when T << 
TK, the total resistivity follows the po + A T 2  law and the coefficient of the T 2  term 
increases and changes its sign from negative to positive with increasing concentration of 
the magnetic ions. The residual resistivity of the system is calculated in quite a simple 
way. The occurrence of the resistivity maximum at a finite temperature T,,, (>O)  is also 
obtained when the alloy concentration x > x, and contributions Pm( T )  and ,on( T )  are 
both taken into account. Our results are in agreement with the experiments in [9-111 
qualitatively. We believe that the methods and results of the present paper offer a 
reasonable explanation for the crossover of the electrical resistivity of HF alloys from 
single-impurity behaviour to the coherence (concentrated) regime. Finally, we should 
mention that our discussion on the resistivity is valid only to the order of 1/Nof the slave 
boson field, i.e. within the Gaussian fluctuation approximation approach. Beyond the 
Gaussian fluctuation approximation, as pointed out recently in [31], the RKKY interaction 
between the quasi-particles in the HF lattice limit exists. This is due to the spin fluctuations 
involving high-frequency (U > T K )  fluctuations of the slave boson field and is of great 
importance to the mechanisms of the superconducting pairing and magnetism for the 
HF systems. The high-frequency RKKY interaction may provide a small non-universal 
correction to the resistivity, but it is also important to recognise that the main features of 
the resistivity in the HF alloys can be understood qualitatively in the Gaussian fluctuation 
scheme without considering this high-frequency R K K Y  interaction. 
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